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I. INTRODUCTION

This is the final project report for the Brain Computer
Interfaces (BE 521). The project involved predicting fin-
ger flexion movements from intracranial EEG recordings
in three subjects. The data and tasks are derivatives of
the 4th International Brain Computer Interfaces Compe-
tition. [8]

In the following sections we present the our final
algorithm (Section II), an explanation of our design
choices and alternative methods considered (Sections II,
III), a short discussion on the physiological structure
of the hand and how it effects finger flexion (Section
IV), and our conclusions regarding this project. Our
references and code are also included.

II. METHODS

In this project we were given ECoG data and asked
to predict finger flexion movements in three patients.
Our final algorithm was derived from the simple linear
regression method suggested in the BE 521 final project
description.

The data included data glove traces, training ECoG
traces and testing ECoG traces for which we needed to
predict finger flexions. A flow chart of our algorithm is
provided in Figure 1. First we train our prediction model
using the training ECoG and data glove information. Our
training prediction model is generated as follows:

• Feature Generation
• Feature Selection
• Channel Selection
• Partial Least Squares Regression Method
• Post-Processing
• Cross Validation
We then apply the trained prediction model to our

testing ECoG data to generate predictions for finger
flexions. We begin creating our training prediction model
by computing features from the training ECoG data.
Using feature selection we extracted the six features
for each patient that we found to be most optimum
for the application. (Section II-B). We also performed
channel selection by the Recursive Channel Elimination
method to derive the most optimum channels per finger
per patient (Section II-C).

For Patients 1 and 3 we used a Partial Least Squares
Regression (PLSR) method to derive weights for each

column of input. The number of PLS components to
be used to build a model was customised for each
finger to give the best response. A feature matrix similar
to that formed for training the classifier was formed
from the test ECoG data. Using the weights derived,
a prediction of finger flexion movement was then made.
(Section II-D) Finger flexion movements of Patient 2
were seen to show better correlation to the data glove
trace when linear regression was used instead of PLSR
for prediction, and thus in our final algorithm Patient
2 continues to use the Simple Linear Prediction model.
(Section II-E)

Three post-processing steps were performed on the
predictions : interpolation, zero-clamping and smooth-
ing. We used interpolation to match the length of the
predicted data glove values to the length of the ECoG
data. In zero-clamping negative values of the prediction
trace were set to zero, such that it would resemble
the rest period baseline signal in the data-glove trace.
The prediction trace was also smoothed using a simple
moving average filter. (Section II-F) The same post-
processing steps were performed for these predictions
as well. Cross validation was used to monitor the per-
formance of the components of our algorithm. (Section
II-G)

A more detailed explanation of algorithms we used is
provided below.

A. Feature Generation

In this section we present the features we considered
to capture information about finger flexion movements
from the ECoG data.

It has been observed that the information about finger
flexion movement is contained in particular frequency
bands in ECoG data. As a result features that extract
frequency band information have been used extensively
for decoding motor movements. [10] [6] [2]

We used the band specific amplitude modulation
features as described by Sanchez, et al. in the bands
1-60 Hz, 60-100 Hz, 100-200 Hz and 200-300 Hz.
This feature is defined as the sum of the power of the
bandpass filtered ECoG voltage signal. Elliptical filters
of length 15 with 3 dB ripple in the pass band and a
stopband 50 dB down from peak pass band value were
used for band-pass filtering.



Fig. 1. Flow Chart Summarizing General Steps of our Algorithm

x(tn) =
∑100ms

i=0 v2(tn + i),
wheretn+1 = tn + 50ms.

We also used a feature employing spectral amplitudes
in the 75-115 Hz (high gamma) band as has been
described by Kubanek, et al. This feature has been
reported by them to give a high correlation between
the predictions and the actual movement when used
individually.
x(t) =

∑f2
f=f1

X(f)
where X(f) is the representation of ECoG data in

frequency domain.
The same feature was also calculated for other fre-

quency bands and used, but was eventually discarded
in favour of the AM features mentioned above, which
resulted in better predictions of finger movements.

We also used the LMP (Locomotor Potential), which
is the average time domain amplitude of the signal.
x(t) =

∑100ms

t=0 v(t)
The features were calculated on windows of length

100 ms with 50 ms displacement.

B. Feature Selection

A single feature may contain more information for
certain fingers than it does for other fingers for the
same patient. Thus we selected optimum features for

Patient 1 LMP AM 1 AM 2 AM 3 AM 4 AvSpAmp
Finger 1 1 1 1 1 1 1
Finger 2 1 1 1 1 1 1
Finger 3 1 0 0 1 0 1
Finger 4 1 0 1 1 1 0
Finger 5 1 1 1 1 0 0

TABLE I

THIS TABLE SUMMARIZES THE FEATURE SELECTION FORPATIENT

1. A ’0’ FOR A FEATURE SIGNIFIES THAT IT WAS NOT USED FOR

PREDICTION. LMP = LOCOMOTOR POTENTIAL, AM ’ X ’=

AMPLITUDE MODULATION FEATURES IN THE BANDS X=1 :1-60

HZ, X=2: 60-100 HZ, X=3: 100-200 HZ AND X =4: 200-300 HZ

RESPECTIVELY, AVSPAMP = AVERAGE SPECTRAL AMPLITUDE

FEATURE IN THE BAND 75-115 HZ.

each finger by running cross validation for various
combinations of features for each finger. Features thus
customised to each finger of each patient were then
arranged in a matrix such that the data from last 150
ms is used to predict the movement at a given time.
Detailed information regarding the used feature-finger-
patient combination is provided in Table I.



C. Channel Selection

We used the Recursive Channel Elimination (RCE)
method [7] for channel selection. Instead of using the
mean of the weight vector of a SVM to determine which
channels are the best, we used the mean of the weight
vector obtained from the linear regression algorithm.
The method was as follows:

• In every iteration, a linear regressor was trained and
weights were calculated.

• The mean of the weights were sorted and the chan-
nel corresponding to the weights with the lowest
mean was discarded.

• Peform cross validation.
• Repeat this method was performed until the number

of channels is reduced to 1.

The channels which resulted in the highest correlation
values via cross validation were chosen as the optimal
channels. This method was performed for each finger of
each patient.

After the optimal features and channels are selected
for each finger of each patient, these values are fed into
an algorithm to predict finger flexion values. For Patients
1 and 3 the Partial Least Squares Regression method is
used (next section) while in Patient 2, Simple Linear
Regression is used (Section II-E).

D. Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is used to
predict finger flexions in Patients 1 and 3. PLSR is
an extension of multiple linear regression and principal
component analysis. It models a response variable when
there are a large number of predictor variables, and those
predictors are highly correlated or even collinear.

The purpose of PLSR is to build a linear model
Y = XB+E whereY is a vector of response variables,
X is a matrix of predictor variables,B is the matrix of
regression coefficients andE is a noise term. Unlike a
regular linear regression model, however, a factor score
matrix is derived from the predictor variables such that
the variables have no correlation between them. This
factor score matrixT , is computed asT = XW where
the W weight matrix is computed to maximise the
covariance between the responses and the factor scores.
An ordinary least squares procedure is then followed to
find Q such thatY = TQ + E. Using Q andW , we
then computeB = WQ.

Principal components regression and partial least
squares regression differ in the methods used in ex-
tracting factor scores. During our trial using principal
components regression, we found that the correlation
values during our cross validation were significantly
lower. In our implementation of PLSR, we used Matlab’s
plsregress().

E. Simple Linear Regression

As a part of a simple method used to cross Check-
point 1, we implemented the optimal linear decoder as
described in [12]. This simple linear regression model
was also used to predict finger flexions for Patient 2.

We constructed a row vector by concatenating the
feature values for each selected channel one after the
other. For example, if for a certain finger, we found 50
channels and 6 features to be most effective, for each
time bin (corresponding to a row vector), we would have
50 ∗ 6 = 300 entries in the row vector.

Feature values were thus calculated for each channel
of interest using a moving window of 100 ms and a
window overlap of 50 ms. Each block of time for which
a feature was calculated is a time bin. Concatenated
feature vectors built as described above were arranged
row by row corresponding to time bins. This large
feature matrix was then normalised by centering and
the rescaling. The response matrix R used in [12] was
built using this feature matrix. We used three previous
time bins to make predictions for the following data
glove movement. The weights derived from R using a
least squares method of regression are given byWt =
frac(R′

∗R)R′
∗ Y whereY are the response variables

corresponding to the data glove values for a particular
finger.

F. Post Processing

PLSR and Simple Linear Regression provided us with
an initial finger flexion prediction. Because the dataglove
had been downsampled the predicted values need to be
interpolated to match the size of the ECoG data. We
used a Piece-wise Cubic Hermite Interpolating Polyno-
mial algorithm provided by MATLAB (pchip()). These
prediction traces were visually evaluated and found to
contain a lot of noisy data. The flexion traces from the
dataglove have a baseline value during the rest periods
between movement epochs. This rest period was found
to be particularly noisy in the predictions. Two methods
were used for processing the predictions to extract finger
flexion data. The first, we will call zero-clamping and
the second, is an application of a filter.

In zero-clamping all the data points with negative
values were clamped to zero. This provided the baseline
values for the rest periods that agreed with the real-
world constraints of finger flexions. The second method
we applied involved the application of a filter that was
used to extract the low frequency finger flexion values
from the predictions. We used a simple moving average
filter filter at an optimal filter length that was chosen for
every finger per patient via cross validation. The results
of post-processing is shown in Figure 2.



0 20 40 60 80 100 120 140 160
−2

0

2

4

time (sec)

A
m

pl
itu

de

Predictions from PLSR algorithm

0 20 40 60 80 100 120 140 160
0

1

2

3

4

time (sec)

A
m

pl
itu

de

Prediction traces after zero−clamping and smoothing

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

time (sec)

A
m

pl
itu

de

Dataglove trace

Fig. 2. Application of Post-Processing

G. Cross Validation Framework

A framework for easy cross validation was set up to
quickly and robustly test the outcome of our numerous
experiments. We used a 2-fold cross validation, the first
fold trained on 3/5ths of the data and the 2nd trained
on 4/5ths of the data. Testing was always performed
on the remaining part of the data. The output from our
cross validation always gave us a reliable measure of the
comparative rise or fall in the correlation values, even
though the exact values were never the same as on the
testing set. An example of the predicted finger flexions
is shown in Figure 3.

III. ALTERNATIVE METHODS CONSIDERED

In creating this final algorithm we had considered a
number of alternative methods, including preprocessing
techniques, alternative features, and prediction models.

A. Spatial Preprocessing Techniques

We were eager to try a variety of preprocessing meth-
ods to maximize the information contained in each chan-
nel of the ECoG data, similar to spatial filtering. These
techniques included: Common-Averaged-Referencing, a
surface Laplacian spatial filter , a multi-step preprocess-
ing spatial filter applied in ECoG to hand-grasp tasks,
and Common Spatial Pattern Algorithm.

1) Common Average Referencing: The common av-
erage reference is a method used to reduce the impact
of artifacts across all channels. It is calculated by
computing the global mean at a particular timepoint

across all channels and subtracting this mean from
each signal. For the original signalsh, channelh, total
number of channelsH , the CAR-filtered signals′h is
defined as:s′h = sh −

1
H

∑H

q=1 sq. While this method
is mentioned as a common spatial filtering technique in
numerous ECoG related movement tasks [6] our cross-
validation results revealed a lower correlation between
the predicted finger flexion and data glove values after
applying this method and thus this method was excluded
from our final algorithm.

2) Surface Laplacian Spatial Filter: The surface
Laplacian filter applies the CAR method using only the
channels located spatially around the channel of interest.
In our project the Surface Laplacian Filter was calculated
using the 8 channels located around the central electrode.
[13] However, as the electrode order was scrambled in
our dataset it did not lead to better results than the CAR
method [8]. It would be interesting to see if this is an
effective method for reducing artifacts and increasing
the signal to noise ratio in ECoG data in general.
Additionally, it is plausible that if the electrodes were not
scrambled, and if the Surface Laplacian Spatial Filters
were applied that we would achieve greater testing
correlations using our algorithm.

3) Multi-step Spatial Preprocessing: A third method
that was considered for spatial preprocessing included
a multi-step spatial processing method employed by
Pistohl et. al. in decoding hand grasp movements from
ECoG data. The three steps of this method included:
1) Apply Common Average Referencing. 2) Centering
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Fig. 3. Comparison of Finger Flexion Predictions During Cross Validation

the Data by subtracting the mean of the signal. 3)
Normalizing the Data by the standard deviation of the
signal. [9]

4) Common Spatial Pattern Algorithm: The Com-
mon Spatial Pattern Algorithm (CSP) was presented by
Huang, et. al. as a method for increasing the spatial filter
for EEG recordings used for Brain Computer Interfaces.
We applied the technique to the ECoG data we were
given to highlight the independent components of each
electrode’s signal. The CSP works by first solving for
the eigenvectors of the signal, and filtering out the
correlating values between electrodes. [5]

B. Features

In addition to the features presented in Section II-A
we additionally considered the Katz Fractal Dimension.

1) Katz Fractal Dimension: We hypothesized that
a finger flexion may correspond to a transient change
in the ECoG data, and thus considered the fractal
dimension of the waveform as a possible feature for
our project. The Katz Fractal Dimension is defined as:
FractalDimension = log(N−1)

(log( d

L
)+log (N−1))

whereN is
the total number of data points in a data section to
be analyzed,L is the sum of the Euclidean distances
between data points (total length of the section), and
d is the Euclidean distance between the first point in
the window and with the farthest point (diameter of
the section). Although the Katz Fractal Dimension was
fast to calculate, it provided us with little additional
information in classifying and predicting finger flexions

and was excluded using our feature selection algorithm.
[1]

C. Prediction Models

In addition to linear regression and PLSR we also
considered a combination of Support Vector Machines
(SVM) and Linear Regression.

1) SVM and Linear Regression: This procedure in-
volved training a support vector machine for each finger
to classify movement versus non-movement. The idea
stemmed from [11] where the possibility of using gener-
alised features from ECoG data to learn classifications is
explored. Similarly, we attempted to classify movement
versus non movement using learned features and an
SVM trained on these features. The training labels
were created by setting an empirical threshold on the
amplitude of the data glove signal.

In [3], six states of the data glove movement are
decoded. Each of five states correspond to a single
finger’s movement with the sixth state being one of rest.
Post the identification of the state, a linear regressor is
trained for each finger to determine amplitude.

We followed a similar procedure, but chose not to
include this as part of our final algorithm because we
found that the predictions were very sensitive to the
quality of the labeling received by the SVM. When a
labelled window of movement was shifted by as little as
1000 sample points, we found our correlation values to
drop significantly.



IV. DISCUSSION

From our observations of finger flexions from the
data glove recordings we notice that the th fourth (ring)
finger’s flexion was highly correlated with the third
(middle) and fifth (little) finger’s movements. We believe
that this high correlation is due to the physiological
organization of the muscles in the hand. Indeed, a brief
glance at Differing Perspectives in Motor Learning,
Memory, and Control by Goodman confirms that the ring
finger is indeed innervated by the same nerves as the fifth
(little) finger. Additionally the tendon muscles around
the knuckles of the hand couple the movement of the
ring finger with the third (middle) finger. Because these
three fingers share common nerves and muscles, we
expect their ECoG signals to also be coupled, and thus
we observe the high correlation for our predicted values
between the three fingers, and also observe the high
correlation between fourth (ring) finger movement with
the surrounding fingers in the data glove information.
[4]

V. CONCLUSIONS

In this project, we devised a method to predict finger
flexion movements of a human hand from raw Electro-
corticographic signals. Various features and algorithms
used in current literature were examined for analysis,
data reduction and improvement in prediction. In the
end, we came up with a method in which various
parameters of the algorithm are tuned for each finger
of a particular patient to make the best prediction of its
flexion movements.

It was seen that simple methods such as filtering
and post-processing resulted in larger improvements in
prediction as compared to more involved methods such
as Surface Laplacian Spatial Filter, Common Spatial
Pattern Analysis and Katz Fractal Dimension. We also
realised that it was most optimal to tune all the param-
eters of a method to make the best predictions possible
before trying a new method, something that we realised
towards the end of the project.

The competition format of the project resulted in a
more intense and productive approach to the problem,
along with successful maintenance of code sanity and
modularity.
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