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Chapter 1 Introduction

With the increasing encroachment of man into the natural habitat of birds and 
animals, their existence has been placed in danger; requiring conservationists to keep 
constant track of their movements. Maintaining such detailed records is time 
consuming and tedious if done manually. An easier way is to install cameras that can 
monitor their movement for extended periods of time and transmit the recorded data 
to a processing station. The flight patterns of migratory birds can be observed by 
installing noninvasive cameras. Seasonal variations in bird density and species can be 
studied as this reveals patterns in environmental changes and human influences.
The use of non-invasive camera surveys provides baseline information on 
distribution, activity, and habitat associations can be obtained. A wealth of knowledge 
regarding habits, characteristics, routines, food habits, social setup and safety of the 
species can also be gathered. At processing stations, the data may be analyzed to 
gather this knowledge. The first step in such processing is to know which species the 
data is relevant to. It is our belief that it is possible to automate this crucial first phase. 
We aim to prove this by way of implementing bird recognition in this seminal work.

With the massive amount of data being stored in the form images, it has become 
necessary to develop an efficient method for the retrieval of images based on the 
content. Particularizing the application of content based image retrieval to one 
specific field would help us study the same in a more efficient manner.
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Chapter 2 Literature Survey

2.1 Colour-based Indexing

Research in this area mainly involved indexing the images based on the colour 
distribution of the object to be recognised as exemplified by [1] wherein images were 
indexed in domain specific databases using colours computed from the object of 
interest only (in this case, the bird), instead of the whole image. The challenge in the 
task was the segmentation of the bird from the background. Possible object colours 
were found by first finding background colours and eliminating them. Pixels are 
marked as background pixels by successively counting the maximum number of 
pixels with a specific colour around the margin of the image. After eliminating the 
marked background pixels the most prominent objects are selected by connected 
component analysis. This is followed by extracting the largest of all the components. 
This process is repeated with some other colour as background if we are not able to 
retrieve the bird as the most prominent object. Edges are detected based on colour 
gradient. The edge image is then combined with the foreground segment output by the 
colour-based background elimination process. The first step in the combination 
process is to eliminate edge points that are not in the foreground segment. This 
eliminates most of the edges from the background. The edge image at appropriate 
scale was used to eliminate parts of the image that were not in focus and did not 
contain significant structures. The edge information was combined with the colour 
based background elimination to produce regions of interest. Indexing the image is 
done based on the colour of the image. The colour histogram of the object that is 
queried is matched with the object having similar colour distribution in the database.

In the above method, the segmentation technique assumes that the bird remains in the 
centre region and occupies a significant region of the image.  Due to the nature of the 
domain, there are many images of birds, however, include those in flight, very small 
birds, images taken from afar etc. Also, there are instances where the bird's colour is 
not as significant as shape and structure. In such cases, texture based indexing would 
be more fruitful than colour based indexing.

 As the method for recognition is based on colour and texture it becomes necessary to 
first separate the object of interest from the rest of the image. Segmentation is a hard 
problem and it would be very difficult to detect objects which are as varied in color, 
shape, size and viewpoint as pictures of birds. It becomes difficult with birds because 
in most cases the birds are camouflaged with the background making it difficult to 
distinguish. A number of segmentation techniques have been proposed most common 
being background subtraction. 
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2.2 Colour histogram based Indexing

Retrieval based on colour histogram has been widely used in the field of content 
based image retrieval. Their advantages are efficiency and insensitivity to small 
changes in camera viewpoint. A histogram is a coarse characterization of an image, 
and so images with different appearances can also have similar histograms. Several 
improvements of this method have been proposed, histogram refinement being one 
[2]. Histogram refinement splits the pixels in a given bucket into several classes, 
based upon some local property.  Within a given bucket, only pixels in the same class 
are compared. The method made use of till now is called global colour histogram 
(GCH) as colour histogram is a characteristic of the whole image. An improvement 
over GCH called local colour histogram (LCH) makes use of histograms of grids of 
cells of fixed size distributed over the image [3]. 
This method is efficient only in those cases in which there is a remarkable difference 
in the colour intensity of the bird and the background, else the bird will also be 
removed in background elimination. It also requires the bird to be the central object in 
the image containing no other object if interest which is not possible in all cases. 
Colour based background subtraction and indexing is not efficient as these factors can 
change with lighting conditions and weather. 

2.3 Indexing in Flower databases

Some indexing strategies for flower databases were proposed in [4,5] which could be 
used for specialised databases also. They illustrate their approach by using it to solve 
the problem of indexing flower images when searching a flower patents database by 
color. The flower region is isolated from the background using an automatic iterative 
segmentation algorithm with domain knowledge-driven feedback. The flower's color 
is defined by the color names present in the flower region and their relative 
proportions. The database can be queried by example and by color names. The system 
provides a perceptually correct retrieval with natural language queries by using a 
natural language color classification derived from standard color names. 

Since there has not been much work done in this field, we found the necessity of 
building this system for identifying birds. Studying the behaviour of birds with 
change in weather and temperature due to human activities makes it even more 
important. The methods used so far have made use of colour pattern in the bird, not 
taking into account any other feature of the bird, namely shape and texture. It 
becomes important to consider other features also to ensure that the bird has been 
recognised correctly. We have improved on the previous techniques by using the 
texture based features of the bird to distinguish it from others.
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Chapter 3 Objective

The aim of this work is to propose an approach to identify the species of a bird based 
on texture characteristics obtained from a video of the bird.
Our database is built based on information collected through sample videos of birds 
and processing it in five stages. The user query, consisting of a video of a bird is input 
and processed, giving the likely hood of a match to one of the birds in our database.
The five proposed stages of the database building include:

1. Approximate median filter background subtraction [6].  

2. Discrete wavelet transform on desired frames to extract edge information [21]
[22].

3. Connected component analysis to obtain the largest component presumably 
containing the bird.

4. K-means clustering on the largest extracted component from above.

5. Feature extraction involving calculation of inter-cluster distances such as 
Bhattacharya distance [7], Hausdorff distance and Euclidean distance.

The user query image is first put through the five stages mentioned above and then 
through the following stages: 

6. Iterative closest points (ICP) algorithm for texture mapping [8].

7. Data obtained from both feature extraction and ICP are served as input to a 
classifier based on Dempster-Shafer theory i.e. a DST decision maker [9].
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Chapter 4 Design and Methodology

Several approaches were tried to achieve the objective of this work with varying 
degrees of complexity and success rates. This section outlines those methods and 
techniques.

4.1 Background removal

Identifying moving objects from a video sequence is a fundamental and critical task in 
many computer-vision applications. Background subtraction is the process of 
separating out foreground objects from the background in a sequence of video frames. 
Background subtraction is used in many emerging video applications, such as video 
surveillance, traffic monitoring, and gesture recognition for human-machine 
interfaces, to name a few. As computer vision begins to address the visual 
interpretation of action applications such as surveillance and monitoring are becoming 
more relevant. Similarly, recent work in intelligent environments and perceptual user 
interfaces involve vision systems which interpret the pose or gesture of users in a 
known, indoor environment. In all of these situations the first fundamental problem 
encountered is the extraction of the image region corresponding to the person or 
persons in the room.

Previous attempts at segmenting people from a known background have taken one of 
three approaches: 

4.1.1 Background subtraction 

Most common is some form of background subtraction. It identifies moving objects 
from the portion of a video frame that differs significantly from a background model, 
using statistical texture properties of the background observed over extended period 
of time to construct a model of the background, and use this model to decide which 
pixels in an input image do not fall into the background class. The fundamental 
assumption of the algorithm is that the background is static in all respects: geometry, 
reflectance, and illumination.

4.1.2 Stationary background

The second class of approach is based upon image motion only presuming that the 
background is stationary or at most slowly varying, but that the person is moving. 
In these methods no detailed model of the background is required. Of course, these 
methods are only appropriate for the direct interpretation of motion; if person stops 
moving, no signal remains to be processed. This method also requires constant or 
slowly varying geometry, reflectance, and illumination.
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4.1.3 Geometry based

The final approach is based upon geometry. Dense depth maps in real-time are 
computed to provide a background disparity value that the algorithm can perform 
real-time depth segmentation or ``z-keying'' with. The only assumption of the 
algorithm is that the geometry of the background does not vary. However, the 
computational burden of computing dense, robust, real-time stereo maps, requires 
great computational power.

There are many challenges in developing a good background subtraction algorithm. It 
must be robust against changes in illumination. It should avoid detecting non-
stationary background objects such as moving leaves, rain, snow, and shadows cast by 
moving objects. Finally, its internal background model should react quickly to 
changes in background such as starting and stopping of vehicles.
Background removal is one of the most efficient methods used for segmenting the 
object in the video.

We have made use of the approximate median filter background subtraction to 
remove the background from the video in order to separate the bird as the region of 
interest. 

4.1.4 Approximate Median Filter Background Subtraction

In median filtering, the previous N frames of video are buffered, and the background 
is calculated as the median of buffered frames. Then (as with frame difference), the 
background is subtracted from the current frame and thresholded to determine the 
foreground pixels. 

Median filtering has been shown to be very robust and to have performance 
comparable to higher complexity methods. However, storing and processing many 
frames of video (as is often required to track slower moving objects) requires an often 
prohibitively large amount of memory. This can be alleviated somewhat by storing 
and processing frames at a rate lower than the frame rate thereby lowering storage and 
computation requirements at the expense of a slower adapting background. 

A more efficient compromise was devised back in 1995 by UK researchers N.J.B. 
McFarlane and C.P. Schofield. While doing government funded research on piglet 
tracking in large commercial farms, they came up with an efficient recursive 
approximation of the median filter. Their 'approximate median' method, presented in 
their seminal paper, 'Segmentation and tracking of piglets in images' [6], has since 
seen wide implementation in the background subtraction literature, and been applied 
to a wide range of background subtraction scenarios. 

The approximate median method works as such: if a pixel in the current frame has a 
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value larger than the corresponding background pixel, the background pixel is 
incremented by 1. Likewise, if the current pixel is less than the background pixel, the 
background is decremented by one. In this way, the background eventually converges 
to an estimate where half the input pixels are greater than the background, and half are 
less than the background—approximately the median (convergence time will vary 
based on frame rate and amount movement in the scene.) The more slowly adapting 
background incorporates a longer history of the visual scene, achieving about the 
same result as if we had buffered and processed N frames.

Fig 4.1
A sequence of frames obtained after applying approximate median filter  

background subtraction to a video
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Fig 4.1 (contd.)
A sequence of frames obtained after applying approximate median filter  

background subtraction to a video

This method is a very good compromise. It offers performance near what you can 
achieve with higher-complexity methods (according to academic literature), and it 
costs not much more in computation and storage than frame differencing. In most 
cases, the background is removed to a great extent, providing a good starting point for 
the stages to follow.

4.2 Discrete Wavelet Transform for edge detection

An edge in an image is a contour across which the brightness of the image changes 
abruptly. In image processing, an edge is often interpreted as one class of 
singularities. In a function, singularities can be characterized easily as discontinuities 
where the gradient approaches infinity. However, image data is discrete, so edges in 
an image often are defined as the local maxima of the gradient.

4.2.1 Introduction to wavelets

Fourier analysis of a signal is a representation of it as a superposition of sines and 
cosines. 

        (4.1)

for every real number ξ.
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The signal is analyzed in the time domain for its frequency content. This is done by 
transforming the function in time domain to frequency domain using (4.1).
The Fourier coefficients of the transformed function represent the contribution of each 
sine and cosine function at each frequency allowing the signal to be analyzed for its 
frequency content.
The signal in time domain can be recovered using the inverse Fourier transform as 
shown in (4.2).

(4.2)

for every real number x.

For non-stationary signals, we use the short term Fourier transform (STFT). The 
signal is divided into small enough segments, where these segments of the signal can 
be assumed to be stationary. For this purpose, a window function "w" is chosen. The 
width of this window must be equal to the segment of the signal where its stationarity 
is valid.

(4.3)

If we use a window of infinite length, we get the Fourier transform, which gives 
perfect frequency resolution, but no time information. The narrower the window, the 
better the time resolution and better the assumption of stationarity but poorer the 
frequency resolution.

Fig 4.2
Coverage of time-frequency plane by Fourier basis functions in STFT 

where the window is a square wave
(from [21])

As a single window is used for all frequencies in the STFT, the resolution of the 
analysis is the same at all locations in the time-frequency plane.

In wavelet transforms, the windows vary in size. For good frequency resolution, we 
use a large window at low frequencies whereas for good time resolution, we use a 
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narrow window at high frequencies.

Fig 4.3
Coverage in time-frequency plane by Daubechies wavelet basis

(from [21])

As abstracted in [12], wavelets are mathematical functions that cut up data into 
different frequency components, and then study each component with a resolution 
matched to its scale. They have advantages over traditional Fourier methods in 
analyzing physical situations where the signal contains discontinuities and sharp 
spikes. Wavelets were developed independently in the fields of mathematics, quantum 
physics, electrical engineering, and seismic geology. Interchanges between these 
fields during the last ten years have led to many new wavelet applications such as 
image compression, turbulence, human vision, radar, and earthquake prediction.

A wavelet is a mathematical function used to divide a given function or continuous-
time signal into different scale components. Usually one can assign a frequency range 
to each scale component. Each scale component can then be studied with a resolution 
that matches its scale. A wavelet transform is the representation of a function by 
wavelets. The wavelets are scaled and translated copies (known as "daughter 
wavelets") of a finite-length or fast-decaying oscillating waveform (known as the 
"mother wavelet"). Wavelet transforms have advantages over traditional Fourier 
transforms for representing functions that have discontinuities and sharp peaks, and 
for accurately deconstructing and reconstructing finite, non-periodic and/or non-
stationary signals.

This representation is a wavelet series representation of a square-integrable function 
with respect to either a complete, orthonormal set of basis functions, or an over 
complete set of Frame of a vector space (also known as a Riesz basis), for the Hilbert 
space of square integrable functions.

Wavelet transforms are classified into discrete wavelet transforms (DWTs) and 
continuous wavelet transforms (CWTs). Both DWT and CWT are continuous-time 
(analog) transforms. They can be used to represent continuous-time (analog) signals. 
CWTs operate over every possible scale and translation whereas DWTs use a specific 
subset of scale and translation values or representation grid.

Unlike the Fourier transform, wavelet transform does not a single set of basis 
functions (sine and cosine). Instead there are an infinite number of possible sets of 
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basis functions. 

4.2.2 Continuous Wavelet Transform (CWT)

The CWT was developed as an alternative approach to the STFT to overcome the 
resolution problem. The wavelet analysis is done in a similar way to the STFT 
analysis, in the sense that the signal is multiplied with a function, i.e. the wavelet, 
similar to the window function in the STFT, and the transform is computed separately 
for different segments of the time-domain signal. However, there are two main 
differences between the STFT and the CWT: 

1. The Fourier transforms of the windowed signals are not taken, and therefore 
single peak will be seen corresponding to a sinusoid, i.e., negative frequencies 
are not computed. 

2. The most significant difference is that the width of the window is changed as 
the transform is computed for every single spectral component.

(4.4)

CWT is a function of two variables viz. b, the translation and a, the scale. Psi(b,a) is 
similar to the window function in STFT and is called the mother wavelet as it is the 
general function from which the other windows are generated. Examples of mother 
wavelets include Daubechies, Cauchy's, Mexican hat, Coiflet and Haar wavelets.

4.2.3 Discrete wavelet transform (DWT)

CWT and STFT cannot be practically computed with analytical equations, integrals 
etc. A discretized CWT is calculated instead. Due to the inherent changes in scale 
during calculation of wavelet transform, the number of samples to be taken (the 
natural choice is a uniform sampling rate) can be reduced. At lower frequencies i.e. 
higher scales, the sampling rate can be lower (Nyquist theorem) and at higher 
frequencies i.e. lower scales the sampling rate is higher. Dyadic sampling is usually 
done.

4.2.4 DWT and Multiresolution analysis

The continuous wavelet transform was computed by changing the scale of the analysis 
window, shifting the window in time, multiplying by the signal, and integrating over 
all times. In the discrete case, filters of different cutoff frequencies are used to analyze 
the signal at different scales. The signal is passed through a series of high pass filters 
to analyze the high frequencies, and it is passed through a series of low pass filters to 
analyze the low frequencies.
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The resolution of the signal, which is a measure of the amount of detail information in 
the signal, is changed by the filtering operations, and the scale is changed by 
upsampling and downsampling (subsampling) operations. Subsampling a signal 
corresponds to reducing the sampling rate, or removing some of the samples of the 
signal.

The procedure for calculation of DWT (Fast wavelet transform –  Daubechies' and 
Mallat's algorithm) starts with passing a signal through a half band digital low pass 
filter. After passing the signal through a half band low pass filter, half of the samples 
can be eliminated according to the Nyquist’s rule. This is called downsampling or 
subsampling by two and affects the scale. The resolution (the amount of information 
held in the signal) is affected by filtering.

Fig 4.4
Stages of multiresolution in calculation of DWT using FWT

Daubechies and Mallat's Algorithm
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Fig 4.5
Image and its 1,2,3 level dyadic wavelet transform

4.2.5 Edge detection using wavelets

When the wavelet transform is used with a smoothing function, it is equivalent to 
Canny edge detection. The derivative of a Gaussian is convolved with the image, so 
that local maxima and minima of the image correspond to edges. 
Edges are characterized mathematically by their Lipschitz regularity which is related 
to the wavelet transform. The wavelet transform can characterize the local regularity 
of functions. For an image f (x, y), its edges correspond to singularities of f (x, y), and 
thus are related to the local maxima of the wavelet transform modulus. Therefore, the 
wavelet transform is an effective method for edge detection.

We applied two-level discrete Daubechies 4 (db4) wavelet transform on the frames 
selected after background removal.. 
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Fig 4.6
First level decomposition using db4 DWT

Upper left: Approximation coefficients
Upper right: Horizontal detail coefficients

Lower left: Vertical detail coefficients
Lower right: Diagonal detail coefficients

Fig 4.7
Second level decomposition using db4 DWT

The detail coefficients obtained at the second level were used to reconstruct the image 
with the horizontal, vertical and diagonal details only. The approximate coefficients 
(indicating low frequency information) are ignored as edge information is not 
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contained in them. The reconstructed images from the three detailed coefficients are 
added to produce an image as input to the next stage of our procedure i.e. connected 
component analysis.

4.3 Noise Removal

Noise is considered to be any measurement that is not part of the phenomena of 
interest. Digital images are prone to a variety of types of noise. There are several 
ways that noise can be introduced into an image, depending on how the image is 
created. For example: If the image is scanned from a photograph made on film, the 
film grain is a source of noise. Noise can also be the result of damage to the film, or 
be introduced by the scanner itself. If the image is acquired directly in a digital 
format, the mechanism for gathering the data can introduce noise. Electronic 
transmission of image data can introduce noise. A number of different ways are 
available to remove or reduce noise in an image. Different methods are better for 
different kinds of noise. The methods available include:

4.3.1 Linear filtering

Certain filters, such as averaging or Gaussian filters, are appropriate for this purpose. 
For example, an averaging filter is useful for removing grain noise from a photograph. 
Because each pixel gets set to the average of the pixels in its neighbourhood, local 
variations caused by grain are reduced.

4.3.2 Median filtering

The value of an output pixel is determined by the median of the neighbourhood 
pixels, rather than the mean. The median is much less sensitive than the mean to 
extreme values. Median filtering is therefore better able to remove these extreme 
values without reducing the sharpness of the image.

4.3.3 Adaptive filtering

The wiener filter applied to an image adaptively, tailors itself to the local image 
variance. Where the variance is large, wiener filter performs little smoothing. Where 
the variance is small, wiener filter performs more smoothing. This approach often 
produces better results than linear filtering. The adaptive filter is more selective than a 
comparable linear filter, preserving edges and other high-frequency parts of an image. 
Median filter is used to remove noise from the binarised image before convex hulling.
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4.4 Convex hulling

The bird was to be segmented from the rest of the image following a convex hulling 
procedure. 
Convex hulling [10] is a novel method for image segmentation where image contains 
a dominant object. The method is applicable to a large class of images including noisy 
and poor quality images. It is fully automatic and has low computational cost. It may 
be noted that the proposed segmentation technique may not produce optimal result in 
some cases but it gives reasonably good result for almost all images of a large class. 
The method is found very useful for the applications where accuracy of the 
segmentation is not very critical, e.g., for global shape feature extraction, second 
generation coding etc.
 We employed the pseudo-convex hull algorithm, which is outline below.

4.4.1 Pseudo convex hull algorithm

The proposed algorithm works for a class of images. Depending on the contents, 
images may be grouped into three classes: 

1. Class of images containing a single dominant object (Class-1). Class-1 
contains images of a child, friend, relative, home, car, pet, object of our 
interest (e.g., ancient building, monument, sculpture and statue, biomedical 
image, animal, bird, etc.), famous personality, and so on. These objects, in the 
image, occupy the major area mostly at the centre and are sharply focused. It 
is also observed that the dominant object or the objects of interest in the Class-
1 images are closely convex shaped.

2. Class of images containing many objects of more or less equal significance 
(Class-2). Images of a group of people, cluttered objects, busy area (e.g., 
railway station, departmental store, city street, etc.), business meeting and like 
belong to Class-2.

3. Class of images containing no objects of specific interest, but their 
combination appears very picturesque (Class-3). The class-3 is exemplified by 
outdoor scenery consisting mostly of sky, water body (like, sea, river, lake 
etc.), grass-field, beach etc. none of which is particularly important, but surely 
the combination is. 

4.4.1.1 Definitions

1. An object A is said to be convex if its intersection with a line having any slope 
angle θ produces at most one line segment. 

2. Suppose an image contains an object A. If two distinct line segments, with an 
angle θ between them, starting from every point on the boundary of A can 
reach the image frame without intersecting any of the interior point of A, then 
we call A is a pseudo-convex object with respect to θ; It is readily evident that 
the objects we mostly deal with are neither strictly convex nor concave, but 
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are of type pseudo-convex. Hence, we classify 2D objects into three groups: 
Convex, Pseudo-convex and Concave. Since we work on discrete domain and 
it is known that digital straight line segment can uniquely be defined only for 
the slope 0o, 45o, 90o and 135o, we confine our definition of pseudo-convex 
objects in terms line segment of said orientations only.

3. A digital object A is said to be pseudo-convex if two line segments, with an 
angle θ between them and one of them is either horizontal (slope 0o) or 
vertical (slope 90o), starting from every point on the boundary of A can reach 
the image frame without intersecting any of the interior point of A. 

4. A is a true convex object for θ ≥ 180o and it is taken as a concave object if θ < 
45o. Otherwise, if 45o ≤  θ < 180o then the object is ’closely convex shaped’ 
which can be further classified as follows. If 135o ≤ θ < 180o then the shape of 
A is called ramp-convex. It is ortho-convex if 90o ≤  θ < 135o. A is wedge-
convex for 45o ≤ θ < 90o. 

Fig 4.8
Different types of objects

(a) Pseudo-convex (b) Concave (c) Convex

4.4.1.2 The Algorithm

This segmentation algorithm is based on the idea of obtaining a closely convex region 
corresponding to the dominant object in an image. It may be noted that this region is 
nothing but the pseudo-convex hull of the dominant object.

B(i, j) is the binary image containing a set of points A whose pseudo-convex hull is to 
be determined. That means B(i, j) may be represented as

(4.5)

The steps of the algorithm are:
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Step 1: Take four other arrays H(i, j), V (i, j), D1(i, j) and D2(i, j) of same
size as that of B(i, j), and initialize them with 1’s.

Step 2: Now for each row of H(i, j)
1. Start from first column, change its pixel value to zero and move right

until B(i, j) = 1 or the last column is reached.

2. If the last column is not reached then start from last column, change
pixel values to zero, and move left ward until B(i, j) = 1. 

Step 3: Now repeat sub-steps of 2 for V (i, j), D1(i, j) and D2(i, j) with appropriate
directions i.e., upward and downward for V and so on. 

Step 4: Finally, produce a binary image P(i, j) that contains the pseudo-convex
hull of the given point set A as follows:

(4.6)

1. th = 1 is equivalent to θ = 135o and we have ramp-convex hull.

2. th = 2 is equivalent to θ = 90o and if only H(i, j) and V (i, j) taken, we have 
ortho-convex hull.

3. th = 3 is equivalent to θ = 45o and we have wedge-convex hull.

Finally, it may be noted that wedge-convex hull (hullw) is the closest estimate
of the object as

(4.7)
   

4.4.1.3 Steps in processing

Assuming that the image contains only one dominating object and other objects, if 
present, are small in comparison to the object of interest the steps of the algorithm are 
as follows:
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Fig 4.9
Input image to pseudo convex hull algorithm

1. Noise removal.
Smoothing filters are, in general, used for noise removal and blurring. 
Blurring is used as a preprocessing step to remove small details from the 
image prior to extraction of large objects as well as bridging of small gaps in 
lines and curves. A 5x5 window was used over which median filtering was 
done to remove noise.

2. Initial Segmentation.
i. Formation of a gradient image

This was done by summing up the images as obtained by reconstructing it 
from the Daubechies coefficients from HL,LH and HH sub band blocks. 
The resultant image holds edge information of the central object.

Fig 4.10
Image (4.9) after edge detection by DWT

ii. Thresholding to obtain a binarized image.
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Fig 4.11
Binary (4.10) image after thresholding

3. Final Segmentation.
i. Approximate object area determination.

To  find  out  the  object,  the  edge  image  obtained  in  previous  step 
undergoes  the pseudo-convex  hull  algorithm  to  determine  the 
wedgeconvex hull of the set of edge pixels, i.e., use th = 3.

Fig 4.12
Image (4.11) after being sampled at specified angles and then hulled

ii. Removal of small objects by component labeling.
After computing the wedge-convex hull we get an initial estimate of 
the dominant object.  We also get some small  objects  arising out of 
scattered  extraneous  edge  pixels  in  the  background.  These  can  be 
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isolated  by  component  labeling  and  subsequently  removed  keeping 
only the biggest one.

Fig 4.13
Image (4.12) after connected component analysis and component  

labelling

iii. Final extraction of object region.
After  removal  of  small  objects  we  finally  determine  the  dominant 
object region by applying pseudo-convex hull algorithm with th = 1 on 
the point set of largest connected component obtained from previous 
step.

Fig 4.14
Image (4.13) after largest component extraction and application of  

morphological close operation
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4.4.2 Results of pseudo convex hull algorithm

Our approach to pseudo convex hulling involved obtaining edge information using 
DWT followed by application of median filtering to remove noise. The resulting 
image is binarised and psuedo convex hull algorithm is applied to obtain the object. 
Connected component analysis is done to select the largest object and eliminate noise. 
Psuedo convex algorithm is applied again to avoid intrusions into the object. 
Morphological operator is applied on the result obtained, to close the object edges.

This is not the most efficient method for segmentation as it is very sensitive to noise 
and is unable to extract the required central object of interest if there are other 
elements present in the background. 

In the presence of certain unavoidable objects like branches of trees (on which the 
bird is sitting) in the background, the result is very poor which cannot be used for 
further processing. Hence this method was dropped.

 

4.5 Connected component analysis

Connected component labelling analysis is an algorithmic application of graph theory, 
where subsets of connected components are uniquely labelled based on a given 
heuristic. Connected component labelling is not to be confused with segmentation. 
Connected component labelling is used in computer vision to detect unconnected 
regions in binary digital images, although colour images and data with higher-
dimensionality can also be processed. When integrated into an image recognition 
system or human-computer interaction interface, connected component labelling can 
operate on a variety of information. 
Connected components labelling scans an image and groups its pixels into 
components based on pixel connectivity, i.e. all pixels in a connected component 
share similar pixel intensity values and are in some way connected with each other. 
Once all groups have been determined, each pixel is labelled with a graylevel or a 
colour (colour labelling) according to the component it was assigned to. Extracting 
and labelling of various disjoint and connected components in an image is central to 
many automated image analysis applications. 

Connected component labelling works by scanning an image, pixel-by-pixel (from top 
to bottom and left to right) in order to identify connected pixel regions, i.e. regions of 
adjacent pixels which share the same set of intensity values V. (For a binary image 
V={1}; in a graylevel image V will take on a range of values, for example: V={51, 
52, 53, ..., 77, 78, 79, 80}.)
Connected component labelling works on binary or graylevel images and different 
measures of connectivity are possible. However, for the following we assume binary 
input images and 8-connectivity. The connected components labelling operator scans 
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the image by moving along a row until it comes to a point p (where p denotes the 
pixel to be labelled at any stage in the scanning process) for which V={1}. When this 
is true, it examines the four neighbours of p which have already been encountered in 
the scan (i.e. the neighbours (i) to the left of p, (ii) above it, and (iii and iv) the two 
upper diagonal terms). Based on this information, the labelling of p occurs as follows:

1. If all four neighbours are 0, assign a new label to p, else

2. If only one neighbour has V={1}, assign its label to p, else

3. If more than one of the neighbours have V={1}, assign one of the labels to p 
and make a note of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence 
classes and a unique label is assigned to each class. As a final step, a second scan is 
made through the image, during which each label is replaced by the label assigned to 
its equivalence classes. For display, the labels might be different graylevels or 
colours.
The component with the maximum number of pixels with the same label is extracted 
as this represents the largest connected component in the image.

Connected component analysis has been made use of in a certain cases to obtain the 
bird separately:

1. To extract the bird from the edge information as obtained from the detailed 
coefficients of Daubechies wavelet transform, so that further processing 
becomes easier.

2. After convex hulling to extract the single largest object and remove noise.

4.6 Morphological closing operation

Morphological image processing consists of a set of operators that transform the 
image according to topological and geometrical continuous-space concepts such as 
size, shape, convexity, connectivity, and geodesic distance on both continuous and 
discrete spaces. Mathematical morphology is also the foundation of morphological 
image processing is a theory and technique for the analysis and processing of 
geometrical structures, based on set theory, lattice theory, topology, and random 
functions. Mathematical morphology is most commonly applied to digital images.

There are basically two morphological operators that are shift-invariant and related to 
Minkowski addition viz. Dilation and erosion.
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4.6.1 Dilation

The basic effect of the operator on a binary image is to gradually enlarge the 
boundaries of regions of foreground pixels  (i.e. white pixels, typically). Thus areas of 
foreground pixels grow in size while holes within those regions become smaller. The 
dilation operator takes two pieces of data as inputs. The first is the image which is to 
be dilated. The second is a (usually small) set of coordinate points known as a 
structuring element (also known as a kernel). It is this structuring element that 
determines the precise effect of the dilation on the input image.
Mathematically, dilation for a binary image is : 
Suppose that X is the set of Euclidean coordinates corresponding to the input binary 
image, and that K is the set of coordinates for the structuring element. 
Let Kx denote the translation of K so that its origin is at x. 
Then the dilation of X by K is simply the set of all points x such that the intersection 
of Kx with X is non-empty.

4.6.2 Erosion

The basic effect of the operator on a binary image is to erode away the boundaries of 
regions of foreground pixels (i.e. white pixels, typically). Thus areas of foreground 
pixels shrink in size, and holes within those areas become larger. The erosion operator 
takes two pieces of data as inputs. The first is the image which is to be eroded. The 
second is a (usually small) set of coordinate points known as a structuring element 
(also known as a kernel). It is this structuring element that determines the precise 
effect of the erosion on the input image.
Mathematically, erosion for a binary image is :
Suppose that X is the set of Euclidean coordinates corresponding to the input binary 
image, and that K is the set of coordinates for the structuring element. 
Let Kx denote the translation of K so that its origin is at x. 
Then the erosion of X by K is simply the set of all points x such that Kx is a subset of 
X.

4.6.3 Closing

Closing is similar in some ways to dilation in that it tends to enlarge the boundaries of 
foreground (bright) regions in an image (and shrink background color holes in such 
regions), but it is less destructive of the original boundary shape. As with other 
morphological operators, the exact operation is determined by a structuring element. 
The effect of the operator is to preserve background regions that have a similar shape 
to this structuring element, or that can completely contain the structuring element, 
while eliminating all other regions of background pixels. Closing is opening 
performed in reverse. It is defined simply as dilation followed by erosion using the 
same structuring element for both operations. The closing operator therefore requires 
two inputs: an image to be closed and a structuring element. 
Closing is the dual of opening, i.e. closing the foreground pixels with a particular 
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structuring element, is equivalent to closing the background with the same element.

The closing operation was performed on the image obtained after pseudo convex 
hulling.

4.7 Picking up frames from videos

To ensure correct bird recognition we have to study the bird in different postures. This 
is possible by extracting frames from videos which can provide maximum 
information about the bird. We automated this process by picking up best ten frames 
based on the criteria that the largest connected component in these frames are the ten 
best out of all the frames. Unfortunately this method didn't turn out to be of any use as 
we couldn't retrieve the frames with side views. Most frames obtained had a large 
exposed surface area of the bird, but it was not a side view. Hence, we had to pick up 
suitable frames from the videos manually.

4.8 Template matching 

Template matching was used as a pre-processing step to check if a bird was indeed 
present in the image or not. 
Template matching is the process of matching a template to an image, where the 
template is a sub-image that contains the shape we are trying to find. We centre the 
template on an image point and count up how many points in the template match 
those in the image. The procedure is repeated for the entire image and the point which 
led to the best match, the maximum count, is deemed to be the point where the shape 
lies within the image. Template matching is used to find the existence of the bird in 
the image by matching a template of the beak with the image. We used three methods 
for the same which are explained as below: 

4.8.1 Generalised Hough transform

The Hough Transform is a technique that locates shapes in images. It has been used to 
extract lines, circles and ellipses. Many shapes are far more complex than lines, 
circles or ellipses. It is often possible to partition a complex shape into several 
geometric primitives, but this can lead to a highly complex data structure. In general it 
is more convenient to extract the whole shape. This has motivated the development of 
techniques that can find arbitrary shapes using the evidence-gathering procedure of 
the hough transform. These techniques again give results equivalent to those delivered 
by matched template filtering, but with the computational advantage of the evidence 
gathering approach. An early approach offered only limited capability for arbitrary 
shapes. The full mapping is called the Generalised hough transform and can be used 
to locate arbitrary shapes with unknown position, size and orientation. The GHT can 
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be formally defined by considering the duality of a curve.

The formal analysis of the HT provides the route for generalising it to arbitrary shapes 
[19]. Let the model curve be:

       (4.8)

In general, we are interested in matching the model shape against a shape in an image.
The shape in the image has a different location, orientation and scale.
The image shape can be defined by considering translation, rotation and change of 
scale. Thus, the shape in the image can be defined as

ω(θ, b, λ, ρ) = b + λR(ρ)υ(θ) (4.9)

where b = (x0, y0) is the translation vector λ is a scale factor and R(ρ) is a rotation 
matrix. The location of the shape is given by:

b = ω(θ) – λR(ρ)υ(θ)  (4.10)

Given a shape ω(θ) and a set of parameters b, λ and ρ, this equation defines the 
location of the shape. We do not know the shape ω(θ) (since it depends on the 
parameters that we are looking for), but we only have a point in the curve. If we call 
ωi = (ωxi, ωyi) the point in the image, then

b = ωi – λR(ρ)υ(θ) (4.11)

defines a system with four unknowns and with as many equations as points in the 
image. In order to find the solution we can gather evidence by using a four-
dimensional accumulator space. For each potential value of b, λ and ρ, we trace a 
point spread function by considering all the values of θ. That is, all the points in the 
curve υ(θ). In the GHT the gathering process is performed by adding an extra 
constraint to the system that allows us to match points in the image with points in the 
model shape. This constraint is based on gradient direction information. The gradient 
direction at a point in the arbitrary model is given by:

(4.12)

This equation is true only if the gradient direction at a point in the image matches the
rotated gradient direction at a point in the (rotated) model.
That is, a point spread function for a given edge point ωi is obtained by selecting a 
subset of points in υ(θ) such that the edge direction at the image point rotated by ρ 
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equals the gradient direction at the model point. 

4.8.1.1 Method

Given an image point ωi we have to find a displacement vector γ(λ, ρ). When the 
vector is placed at ωi, then its end is at the point b. In the GHT jargon, this point is 
called the reference point. The vector γ(λ, ρ) can be obtained as λR(ρ) υ(θ). In order to 
evaluate these equations, we need to know the point υ(θ). This is the crucial step in 
the evidence gathering process.

Fig 4.15
(a) Geometry of GHT (b) Structure of R-table

The process of determining υ(θ) centres on solving Equation 5.76. According to this
equation, since we know φˆi′, then we need to find the point υ(θ) whose gradient 
direction is 
                                           φˆi′ + ρ = 0. 
Then we must use υ(θ) to obtain the displacement vector γ(λ, ρ). The GHT
pre-computes the solution of this problem and stores it an array called the R-table. 
The Rtable stores for each value of φˆi′ the vector γ(λ, ρ) for ρ = 0 and λ = 1. In polar 
form, the vectors are stored as a magnitude direction pair and in Cartesian form as a 
co-ordinate pair.
The possible range for φˆi′ is between –π/2 and π/2 radians. This range is split into N
equispaced slots, or bins. These slots become rows of data in the R-table. The edge 
direction at each border point determines the appropriate row in the R-table. The 
length, r, and direction, α, from the reference point is entered into a new column 
element, at that row, for each border point in the shape. In this manner, the N rows of 
the R-table have elements related to the border information, elements for which there 
is no information contain null vectors. The length of each row is given by the number 
of edge points that have the edge direction corresponding to that row; the total number 
of elements in the R-table equals the number of edge points above a chosen threshold. 
The structure of the R-table for N edge direction bins and m template border points is 
illustrated in Fig 4.15 (b).

Now using the data stored in the R-table we build the accumulator array. The co-
ordinates of points given by evaluation of all R-table points for the particular row 
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indexed by the gradient magnitude are used to increment cells in the accumulator 
array. The maximum number of votes occurs at the location of the original reference 
point. After all edge points have been inspected, the location of the shape is given by 
the maximum of an accumulator array.

4.8.1.2  Results and conclusion

Although GHT is an effective method for shape extraction, there are several inherent 
difficulties in its formulation. The most evident problem is that the table does not 
provide an accurate representation when objects are scaled and translated. This is 
because the table implicitly assumes that the curve is represented in discrete form. 
Thus, the GHT maps a discrete form into a discrete parameter space. Additionally, the 
transformation of scale and rotation can induce other discretisation errors. This is 
because when discrete images are mapped to be larger, or when they are rotated, loci 
which are unbroken sets of points rarely map to unbroken sets in the new image. 
Another important problem is the excessive computation required by the four-
dimensional parameter space. This makes the technique impractical. Also, the GHT is 
clearly dependent on the accuracy of directional information. By these factors, the 
results provided by the GHT can become less reliable. A solution is to use an
analytic form instead of a table. This avoids discretisation errors and makes the 
technique more reliable. This also allows the extension to affine or other 
transformations. However, this technique requires solving for the point υ(θ) in an 
analytic way, increasing the computational load. A solution is to reduce the number of 
points by considering characteristic points defined as points of high curvature. This 
still requires the use of a four-dimensional accumulator. An alternative to reduce this 
computational load is to include the concept of invariance in the GHT mapping.

Fig 4.16
(a) Template (b) Image to searched in
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Fig 4.17
Accumulator array for the above template matching in GHT

4.8.2 Invariant Generalised Hough Transform

The problem with the GHT (and other extensions of the HT) is that they are very 
general. That is, the HT gathers evidence for a single point in the image, a point on its
own provides little information. Thus, it is necessary to consider a large parameter 
space to cover all the potential shapes defined by a given image point. The GHT 
improves evidence gathering by considering a point and its gradient direction. 
However, since gradient direction changes with rotation, then the evidence gathering 
is improved in terms of noise handling, but little is done about computational 
complexity. In order to reduce computational complexity of the GHT, we can 
consider replacing the gradient direction by another feature. That is, by a feature that 
is not affected by rotation.
Let us explain this idea in more detail. The main aim of the constraint in Equation 
4.12, is to include gradient direction to reduce the number of votes in the accumulator 
by identifying a point υ(θ). Once this point is known, then we obtain the displacement 
vector γ(λ, ρ). For each value of rotation, we have a different point in υ(θ). The 
constraint is replaced by a constraint of the form

Q(ωi) = Q(υ(θ)) (4.13)

The function Q is said to be invariant and it computes a feature at the point. This 
feature can be, for example, the colour of the point, or any other property that does 
not change in the model and in the image. By considering Equation 4.13, we have

          Q(ωi) – Q(υ(θ)) = 0 (4.14)

That is, instead of searching for a point with the same gradient direction, we will 
search for the point with the same invariant feature. The advantage is that this feature 
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will not change with rotation or scale, so we only require a 2D space to locate the 
shape. The definition of Q depends on the application and the type of transformation. 
The most general invariant properties can be obtained by considering geometric 
definitions. In the case of rotation and scale changes (i.e. similarity transformations) 
the fundamental invariant property is given by the concept of angle. An angle is 
defined by three points and its value remains unchanged when it is rotated and scaled. 
Thus, if we associate to each edge point ωi a set of other two points {ωj, ωT} then we 
can compute a geometric feature that is invariant to similarity transformations. That 
is,

(4.15)

where
                                                  Xk = ωk – ωT, 
                                                  Yk = ωk – ωT.

In general, we can define the points [ωj, ωT] in different ways. An alternative 
geometric arrangement is shown in Figure 4.18(a). Given the points ωi and a fixed 
angle υ, then we determine the point ωj such that the angle between the tangent line at 
ωj and the line that joins the points is υ. The third point is defined by the intersection 
of the tangent lines at ωi and ωj. 

(4.16)

We can replace the gradient angle in the R-table by the angle β. The form of the new
invariant table is shown in Figure 4.18(c). Since the angle β does not change with 
rotation or change of scale, we do not need to change the index for each potential 
rotation and scale. However, the displacement vector changes according to rotation 
and scale. Thus, if we want an invariant formulation, then we must also change the 
definition of the position vector.

Fig 4.18
(a), (b) Geometry of invariant GHT (b) Structure of R-table
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In order to locate the point b we can generalise the ideas presented in Figure 4.18(b). 
As in the case of the circle and ellipse, we can locate the shape by considering a line 
of votes that passes through the point b. This line is determined by the value of φi′′. 
First, we will find an invariant definition of this value. Second, we will include it on 
the GHT table. We can develop

(4.17)

(4.18)

In order to define φi′′ we can consider the tangent angle at the point ωi. By considering 
the derivative of Equation 4.12 we have that

(4.19)
Thus,

φi′ = tan(φ – ρ) (4.20) 

where

We define

φˆi′ ′= k + φˆi′     (4.21)

The important point in this definition is that the value of k is invariant to rotation. 
Thus, if we use this value in combination with the tangent at a point we can have an 
invariant characterisation. In order to see that k is invariant, we solve it for Equation 
5.97. That is,

k = φˆi′ – φˆi′′ (4.22)

Thus,
k = ξ – ρ – (φ – ρ) 

That is,
k = ξ – φ (4.23)

That is, independent of rotation. The definition of k has a simple geometric 
interpretation illustrated in Figure 4.18(b).
In order to obtain an invariant GHT, it is necessary to know for each point ωi, the
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corresponding point υ(θ) and then compute the value of φi′′. Then evidence can be 
gathered by the line in Equation 4.18. 
That is,

y0 = φi′′(x0 – ωxi ) + ωyi (4.24)
In order to compute φi′′ we can obtain k and then use Equation 4.22. In the standard
tabular form the value of k can be precomputed and stored as function of the angle β.
During implementation the value of α is set to π/4 and each element of the table stores 
a single value computed according to Equation 4.22. The more cumbersome part of 
the code is to search for the point ωj. We search in two directions from ωi and we stop 
once an edge point has been located. This search is performed by tracing a line. The 
trace is dependent on the slope. When the slope is between –1 and +1 we then 
determine a value of y for each value of x, otherwise we determine a value of x for 
each value of y.

We use the value of β defined in Equation 4.16 to index the. The data k recovered 
from the table is used to compute the slope of the angle defined in Equation 4.22. This 
is the slope of the line of votes traced in the accumulators

4.8.3 Template matching invariant to rotation, scaling and translation – 
The Ciratefi Algorithm

This method [11] proposes a much more efficient approach of finding a query 
template grayscale image Q in another grayscale image A to analyze, invariant to 
rotation, scale, translation, brightness and contrast (RSTBC), without previous 
simplification of A and Q that discards grayscale information, like detection of edges, 
detection of interest points and segmentation/binarization. These image-simplifying 
operations throw away the rich grayscale information, are noise-sensitive and prone to 
errors, decreasing the robustness of the matching. 
The brute force solution to this problem performs a series of conventional template 
matching between the image to analyze A and the query template Q. Image Q must be 
rotated by every angle, translated to every position and scaled by every factor (within 
some specified range of scale factors) and a conventional BC-invariant template 
matching is executed for each instance of the transformed Q. Possibly, the brute force 
algorithm yields the most precise solution to this problem. To obtain RSTBC-
invariant template matching the query shape Q must be rotated by every angle and 
scaled by every factor. In practice, it is not possible to rotate and scale Q by every 
angle and scale, but only by some discrete set of angles and scales. To avoid that, a 
small misalignment may cause a large mismatching, a low-pass filter (for example, 
the Gaussian filter) smoothes both images A and Q. This low-pass filtering lessens the 
errors introduced by using discrete scales and angles. 
Then, each pixel p of A is tested for matching against all the transformed templates. If 
the largest absolute value of the contrast/brightness-aware correlation at pixel p is 
above some threshold t, the template is considered to be found at p. 
This process is divided into three parts described as follows.
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4.8.3.1  Circular sampling filter

Circular sampling filter (Cifi) uses the projections of the images A and Q on a set of 
rings to detect the first grade candidate pixels and their probable scales. The correct 
choice of number of circles l is not essential to our algorithm, because the next two 
steps will further filter the first grade candidate pixels. 

4.8.3.2 Radial sampling filter 

The second filter is called radial sampling filter (Rafi) and uses the projections of 
images A and Q on a set of radial lines to upgrade some of the first grade candidate 
pixels to second grade. The pixels that are not upgraded are discarded. It also assigns 
a probable rotation angle to each second grade candidate pixel. 

4.8.3.3 Template sampling filter

The third filter is called Tefi and it is simply the BC-invariant template matching, 
applied only at the second grade candidate pixels, using the probable scale and angle 
determined respectively by Cifi and Rafi.

4.9 Deskewing 

It was necessary to obtain a deskewed image of the bird as a preprocessing stage, 
hough and radon transform was applied on the image to extract features of the bird. 
These two transforms are able to transform two dimensional images with lines into a 
domain of possible line parameters, where each line in the image will give a peak 
positioned at the corresponding line parameters. They have lead to many line 
detection applications within image processing, computer vision, and seismic.

4.9.1 Hough Transform

The Hough transform is a feature extraction technique used in image analysis, 
computer vision, and digital image processing. The purpose of the technique is to find 
imperfect instances of objects within a certain class of shapes by a voting procedure. 
This voting procedure is carried out in a parameter space, from which object 
candidates are obtained as local maxima in a so-called accumulator space that is 
explicitly constructed by the algorithm for computing the Hough transform. The 
Hough transform algorithm uses an array, called accumulator, to detect the existence 
of a line y = mx + b. The dimension of the accumulator is equal to the number of 
unknown parameters of the Hough transform problem. For example, the linear Hough 
transform problem has two unknown parameters: m and b. The two dimensions of the 
accumulator array would correspond to quantized values for m and b. For each pixel 
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and its neighbourhood, the Hough transform algorithm determines if there is enough 
evidence of an edge at that pixel. If so, it will calculate the parameters of that line, and 
then look for the accumulator's bin that the parameters fall into, and increase the value 
of that bin. By finding the bins with the highest values, typically by looking for local 
maxima in the accumulator space, the most likely lines can be extracted, and their 
geometric definitions read off. The simplest way of finding these peaks is by applying 
some form of threshold, but different techniques may yield better results in different 
circumstances - determining which lines are found as well as how many. Since the 
lines returned do not contain any length information, it is often next necessary to find 
which parts of the image match up with which lines. Moreover, due to imperfection 
errors in the edge detection step, there will usually be errors in the accumulator space, 
which may make it non-trivial to find the appropriate peaks, and thus the appropriate 
lines.

Fig 4.19
Original image – before Hough transform

Fig 4.20
Result of Hough transform on binarized Canny edge detected image

38



Fig 4.21
Deskewed image after application of Hough transform

Fig 4.22
Original input image for Hough transform
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Fig 4.23
Image after applying Hough transform

4.9.2 Radon transform

In mathematics, the Radon transform in two dimensions is the integral transform 
consisting of the integral of a function over straight lines. The radon transform 
computes projections of an image matrix along specified directions. A projection of a 
two-dimensional function f(x,y) is a set of line integrals. The radon transform 
computes the line integrals from multiple sources along parallel paths, or beams, in a 
certain direction. The beams are spaced 1 pixel unit apart. To represent an image, the 
radon transform takes multiple, parallel-beam projections of the image from different 
angles by rotating the source around the centre of the image. Consider the straight line 
defined parametrically by

(x(t),y(t)) = t(sinα, − cosα) + s(cosα,sinα)   (4.25)      

where s is the distance from the origin and α is the angle from the x axis. We define 
the Radon transform of a function f on the plane (where it is assumed that the function 
is continuous and vanished outside a disc of some finite radius) by

(4.26)

A simple thresholding algorithm could then be used to pick out the line parameters, 
and given that the transform is linear many lines will just give rise to a a set of distinct 
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point in the Radon domain.

Fig 4.24
Deskewed image(4.19) after Radon transform

Fig 4.25
Image(4.22) after applying Radon transform

Hough and radon transforms give us an idea of the angles at which straight lines are 
oriented in the image. Using this information we find the longest line segment and the 
angle at which it is oriented. The image is rotated in the reverse sense as the angle 
obtained to deskew the bird image.

This method of deskewing did not turn out to be efficient as in cases where there were 
objects in the background like branches of trees or wires on which the bird is sitting, 
deskewing was done about these objects which gave completely wrong results.
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4.10 Clustering and calculation of inter cluster distances

Clustering is the process of grouping a set of physical or abstract objects into classes 
of similar objects. It is also called unsupervised learning and is used in a number of 
applications. An important facet of clustering is the similarity function used. In case 
of numeric data, a similarity function based on distance such as Euclidean distance is 
usually used. In our approach, we have implemented the classic k-means algorithm to 
obtain a predefined number of clusters; six in this case.

4.10.1 K-means Clustering

In this clustering method, the pixels in the image are clustered into a predefined 
number of clusters. We chose 6 clusters corresponding to the major parts of a bird ( 
bill, crown and nape; back; rump; tail; breast; belly). 

A set of 6 points are chosen from the edge extracted image. We went about choosing 
the initial six points in the following fashion; the edge extracted image is divided into 
six parts; halved along the row and divided into three along the columns. For each 
block so obtained, the point where the intensity of the edge detail was maximum, was 
chosen as the centre of that cluster.

With these six points, then, the clustering process begins. For each point in the edge 
extracted image (i.e. each point on the edges), the similarity function is calculated. 
We used Euclidean distance as the similarity function. The point was then allocated to 
that cluster whose cluster center it is closest to. 

The cluster center is recalculated as the mean of the points in the cluster. The process 
is repeated until the cluster centers stop changing significantly between successive 
iterations.

We chose this algorithm for its simplicity. The results were sufficient for the purpose 
of calculating inter cluster distances. These inter cluster distances serve as features 
that are sent as input to a DST based decision maker that makes a decision on the 
species of the bird in the query image giving a degree of belief based on the evidence 
i.e. the features.

4.10.2 Bhattacharyya distance

In statistics, the Bhattacharyya distance measures the similarity of two discrete 
probability distributions. It is normally used to measure the separability of classes in 
classification or clusters in clustering. 

In its simplest formulation, Bhattacharyya distance can be calculated from the mean 
and variance of each class in the following way [16]: 
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(4.27)

where  is the Bhattacharyya distance between the k1
th and k2

th cluster, 

and  are the variance of the k1
th and k2

th cluster respectively and and  are 
the means of the k1

th and k2
th cluster respectively.

In a recent study [15], a number of measures such as Bhattacharyya, Kullback-
Leibler, Euclidean, Fischer were studied for image discrimination and it was 
concluded that Bhattacharyya distance is the most effective texture discrimination for 
sub-band  filtering schemes.

4.10.3 Hausdorff distance

Named after Felix Hausdorff (1868-1942), Hausdorff distance is the maximum 
distance  of  a  set  to  the  nearest  point  in  the  other  set. More formally, Hausdorff 
distance from set A to set B is a maximin function, defined as: 

(4.28)

where a and b are points of sets A and B respectively, and d(a, b) is any metric 
between these points ; for simplicity, we'll take d(a,b) as the Euclidean distance 
between a and b. 

The distance formula above is a directed Hausdorff distance value. In general 
however, Hausdorff distance is defined as: 

H(A, B) = max(h(A, B), h(B, A)) (4.29)

Thus, it measures the degree of mismatch between two sets by measuring the distance 
of the point of A that is farthest from any point of B and vice versa. Intuitively, if the 
Hausdorff distance is d, then every point of A must be within a distance d of some 
point of B and vice versa [17]. Thus, the notion of resemblance encoded by this 
distance is that each member of A be near some member of B and vice versa. Unlike 
most methods of comparing shapes, there is no explicit pairing of points of A with 
points of B. 
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4.10.4 Euclidean distance

This is one of the simplest features that can be extracted from the clusters. Euclidean 
distance between points P={p1,p2,....pn} and Q={q1,q2,.....qn} in Euclidean n-space 
is defined as : 

(4.30)

4.11 Iterative Closest Point (ICP)

The iterative closest point algorithm (ICP) is designed to fit points in a target image to 
points in a control image. The ultimate goal of the algorithm is to minimize the sum 
of square errors with respect to the closest target points and their corresponding 
control points. It is important that an initial estimate is made regarding where the 
overlay of the images should be. An appropriate transformation should be applied 
based on this initial estimate to align the images coarsely before ICP is applied. The 
base component of the algorithm calculates the smallest distance between each point 
in the target image to a point in the control image. These calculated points are then 
used to form a translation and rotation matrix that is applied over all points in the 
target image to adjust them towards the control image. This processes is repeated 
numerous times, thus an iterative algorithm, with the end result being a target image 
with points that are within a specified squared error distance of their corresponding 
points in the control image.

4.11.1 Introduction to ICP

The data types that ICP can work on are point sets, implicit curves, parametric curves, 
line segment sets, triangle sets (meshes), implicit surfaces and parametric surfaces. 
The motivations behind the use of ICP could be as many as shape inspection, motion 
estimation, appearance analysis, texture mapping and tracking. In our approach, we 
felt that the bird’s colours alone should not be a deciding factor to classify it as it 
occludes many cases where the birds are not brightly coloured. Also variations like 
spots, streaks etc. are too subtle to be caught by simple colour dependent schemes. 
Thus our approach makes use of texture mapping. We aim to map the texture of the 
query image with the standard images in the database.
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4.11.2 Implementation of ICP

ICP always converges monotonically to the local minima with respect to the mean 
squared error (MSE) objective function. 

The implementation consists of four steps discussed below: 

1. Closest points calculation

It is important that during this calculation all regions that are not part of the 
overlying area be removed from further calculations. Examining all the closest 
distances  and  removing  any  correspondences  that  have  distances  above  a 
specified threshold will accomplish this. If a closest point calculation is above 
the specified threshold it signifies that this target model point does not belong 
in the overlapping section of the control model. This assumes that the initial 
estimation for transformation given was within reason.

Given two points r1 and r2, the Euclidean distance between them is defined as

d(r1,r2)=||r1-r2|| (4.31)

Given a point r1 and a set of points A, the Euclidean distance is defined as

(4.32)

The scene shape is angled to be in the best alignment with model shape M. 

(4.33)
(11.3)

where CP is the closest point operator and Y is the set of points closest to M.

Given  Y,  we  can  calculate  (rot,trans)=T(S,Y)  where  rot  and  trans  are  the 
rotation and translation matrix obtained after applying the transformation T to 
points in S and Y. The steps involved in determining rot and trans are outlined 
below.

2. Covariance matrix calculation

Once the closest distances for each point in the target model to a point in the 
control model have been discovered it is necessary to calculate a covariance 
matrix. First it is required to compute the mean value over all the valid points in 
the target model and then a second mean over all the points they corresponded 
to in the control model.
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The end result is two mean points (xmean , ymean , zmean ). Utilizing all valid 
points from both models and the two mean points as row vectors the covariance 
matrix calculation is done. 

n = Number of valid points used in closest point calculation

A = model point vector [xk, yk, zk]

B = corresponding target model point vector [xk, yk, zk]

E = control model mean point vector [x1, y1, z1]

F = target model mean point vector [x2, y2, z2]

  

CovarianceMat =  (4.34)

  

3. Quarternion matrix calculation

The Quarternion  matrix  is  calculated  from the  covariance  matrix.  Let  it  be 
denoted by Q.

4. Transformation matrix calculation

The final step in the ICP algorithm is to calculate a transformation matrix. The 
first step in calculating the transformation matrix is to find the maximum eigen 
value and its corresponding eigen vector for Q.
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Fig 4.26
ICP Algorithm

The transformation matrix so obtained is applied to the scene to update it and the error 
of alignment is recalculated. If the error is above a certain threshold, the process is 
repeated again (iterative closest point).

4.11.3 Analysis of ICP

Each iteration includes 3 main steps. Assume that S is the scene and M the model to 
which the scene needs to be matched. Then NS is the number of points in the scene 
and  NM   is the number of points in the model.

1. Finding the closest points :  

     O(NM) per each point

O(NM*NS) total.

2. Calculating the alignment: O(NS) 

3. Updating the scene: O(NS)  
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It is important that the initial estimate placing the scene next to the model is a strong 
one so ICP does not have too far to converge. In order for ICP to converge at the 
correct position it is important the invalid data points do not contribute to any of the 
calculations.
Applying ICP to the target terrain(yellow) over the control terrain (white) :

Fig 4.27
Model and Target terrain before convergence with ICP

After applying ICP, the target terrain(yellow) converges as close as possible to target 
terrain (white).
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Fig 4.28
Model and Target terrain after convergence with ICP

When handling large data sets it is important that not all valid points are taken into 
consideration. Some methods for handling these data sets are to randomly sample 
points, to choose every xth position point, or to only look for points within a specified 
region of the current point. By randomly sampling points or specifying which points 
to sample you can dynamically choose how many points you sample on each iteration 
of ICP. ICP only needs four valid points to compute a transformation matrix, 
however, it is important that more points are chosen in order for the algorithm to be 
accurate. If more valid points are used it is more likely the algorithm will converge at 
an appropriate position. As the algorithm gets closer to convergence it becomes less 
important that more points are used so you can gradually decrease the points you are 
sampling.

Variants of the basic ICP algorithm have been proposed:
1. Selecting sample points (from one or both meshes)

Use all points, uniform sampling, random sampling at each iteration, ensuring 
that samples have normals distributed as uniformly as possible.

2. Matching to points in the other mesh
Closest point, normal shooting, reverse calibration, restricting matches to 
compatible matches based on colour, intensity, normals etc.

3. Weighting the correspondences
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Constant weights, assigning lower weight to point pairs with greater point to 
point distance, assigning weights based on normal compatibility etc.

4. Rejecting certain (outlier) point pairs
Corresponding points with point to point distance higher than a given 
hreshold, rejection of worst n% pairs based on some metric, pairs containing 
points on end vertices etc.

5. Assigning an error metric to the current transform.
6. Minimizing the error metric with respect to transformation.

4.12  Dempster Shafer Theory   

The Dempster-Shafer theory [20] , also known as the theory of belief functions, is a 
generalization of the Bayesian theory of subjective probability. Whereas the Bayesian 
theory requires probabilities for each question of interest, belief functions allow us to 
base degrees of belief for one question on probabilities for a related question. These 
degrees of belief may or may not have the mathematical properties of probabilities; 
how much they differ from probabilities will depend on how closely the two questions 
are related. 

4.12.1 Introduction to Dempster Shafer theory

Implementing the Dempster-Shafer theory in a specific problem generally involves 
solving two related problems. First, we must sort the uncertainties in the problem into 
a priori independent items of evidence. Second, we must carry out Dempster's rule 
computationally. These two problems and and their solutions are closely related. 
Sorting the uncertainties into independent items leads to a structure involving items of 
evidence that bear on different but related questions, and this structure can be used to 
make computations
There are three important functions in Dempster-Shafer theory: 

The basic probability assignment function (bpa or m), the Belief function (Bel), and 
the Plausibility function (Pl).

The basic probability assignment (bpa) is a primitive of evidence theory.
Generally speaking, the term “basic probability assignment”  does not refer to 
probability in the classical sense. The bpa, represented by m, defines a mapping of the 
power set to the interval between 0 and 1, where the bpa of the null set is 0 and the 
summation of the bpa’s of all the subsets of the power set is 1. The value of the bpa 
for a given set A (represented as m(A)), expresses the proportion of all relevant and 
available evidence that supports the claim that a particular element of X (the universal 
set) belongs to the set A but to no particular subset of A. Formally, a function 
m:P(x)-->[0,1], is called a basic probability assignment (BPA), when it verifies two 
axioms. First, the mass of the empty set is zero:

m(Ø)=0;  (4.35)
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Second, the masses of the remaining members of the power set add up to a total of 1:

                                            (4.36)

The mass m(A) of a given member of the power set, A, expresses the proportion of all 
relevant and available evidence that supports the claim that the actual state belongs to 
A but to no particular subset of A. The value of m(A) pertains only to the set A and 
makes no additional claims about any subsets of A, each of which have, by definition, 
their own mass.

From the mass assignments, the upper and lower bounds of a probability interval can 
be defined. This interval contains the precise probability of a set of interest (in the 
classical sense), and is bounded by two non-additive continuous measures called 
belief (or support) and plausibility:

bel(A)<=P(A)<=pl(A)        (4.37)

The belief bel(A) for a set A is defined as the sum of all the masses of (not necessarily 
proper) subsets of the set of interest:

       (4.38)
       

        
The plausibility pl(A) is the sum of all the masses of the sets B that intersect the set of 
interest A:

                                   
                                                                    (4.39)

Also, plausability and belief are associated by : 
       _

 (4.40)        

        

4.12.2 Motivation behind using DST

The motivation for selecting Dempster-Shafer theory can be characterized by the
following reasons:

1. The relatively high degree of theoretical development among the non- 
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traditional theories for characterizing uncertainty.
2. The relation of Dempster-Shafer theory to traditional probability theory and

set theory.
3. The large number of examples of applications of Dempster-Shafer theory in

engineering in the past ten years.
4. The versatility of the Dempster-Shafer theory to represent and combine

different types of evidence obtained from multiple sources.

4.12.3 Combining the evidence

The purpose of aggregation of information is to meaningfully summarize and simplify 
a corpus of data whether the data is coming from a single source or multiple
sources[23][24]. Familiar examples of aggregation techniques include arithmetic 
averages, geometric averages, harmonic averages, maximum values, and minimum 
values. Combination rules are the special types of aggregation methods for data
obtained from multiple sources. These multiple sources provide different assessments 
for the same frame of discernment and Dempster-Shafer theory is based on the 
assumption that these sources are independent.

Dempster-Shafer Theory as a theory of evidence has to account for the combination 
of different sources of evidence. Dempster & Shafer’s Rule of Combination is a 
essential step in providing such a theory. This rule is an intuitive axiom that can best 
be seen as a heuristic rule rather than a well-grounded axiom. In addition to the 
Dempster rule of combination which is a generalization of Bayes rule, Yager’s rule, 
Inagaki’s unified combination rule, Zhang’s center combination rule and Dubois and 
Prade’s disjunctive pooling rule are used to aggregate evidence to form a single 
conclusion.

There are a number of considerations that need to be addressed when combining 
evidence in Dempster-Shafer theory. Generally speaking, these include the evidence 
itself, the sources of information, the context of the application, and the operation 
used to combine the evidence.

4.12.4 DST applied to bird recognition

In a manner similar to application of DST in problems such as facial feature 
recognition[13] and colour image segmentation[14], we formulate the bird recognition 
problem as a problem of evidence collection. Each inter cluster distance calculated 
serves as a feature which can support a definite subset of birds. To solve this problem, 
Dempster-Shafer theory is employed. 
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4.12.5 Problem formulation under DST

1. Frame of discernment – The set Θ of possible candidates under our problem 
domain i.e. the set of birds that we wish to recognize. In our current work, we 
used only one bird viz a duck.

2. Evidence X is a feature value i.e. inter cluster distances viz. Avg 
Bhattacharyya distance, avg. Hausdorff distance and avg. Euclidean distance 

3. Hypothesis H is the set of candidates selected from the problem domain i.e. a 
subset of Θ.

4. Mass m in the range of [0,1] assigned to each hypothesis. It is the degree to 
which the evidence supports the hypothesis.

4.12.6 Implementation of a very simple DST

1. Calculate average values for the three inter cluster distances (our features) viz. 
Bhattacharyya, Hausdorff and Euclidean distance for the frames picked from 
the user query video.

2. Define threshold for each for each feature as the average value of the feature 
values calculated for the duck in the database.

3. Determine BPA for a hypothesis; in our case; duck; given evidence of the 
existence of a particular feature [18]. i.e.

mBD ({duck}) = 1+exp(val-thresh-1) (4.41)

mBD ({not duck}) = 1- MBD ({duck}) (4.42)

4. Make similar calculations for each of the other two features.
5. Now combine the result using Dempster’s rule.

For each hypothesis processing, the combined effect of two pieces of 
evidence for a given new hypothesis H on the resulting mass is: 

(4.43)

In our case, 
m({duck}) = (mBD ({duck})* mHD ({duck})* mED ({duck}) ) 

------------------------------------------------------
1- (mBD ({duck})* mBD ({notduck})+ mHD ({duck})* mHD 

({notduck})+ mED ({duck})* mED ({notduck}))

5. Calculate m({not duck})=1-m({duck})
6. The maximum of m({duck}) and m({not duck}) gives the result of the query.
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Chapter 5 Results

We built our database for a duck with ten frames picked from a sample video that we 
shot at the local zoo.
A few of the sample frames after background removal are shown below:

Fig 4.29
Few sample frames used to build database

LtoR and TtoB: Figure 2, Figure 3, Figure 6, Figure 9

The feature values were calculated for the ten frames and were tabulated as follows:

FIGURE 
NO.

BHATTACHARYYA 
DISTANCE

HAUSDORFF 
DISTANCE

EUCLIDEAN 
DISTANCE

Minimum Maximum Minimum Maximum Minimum Maximum
1 0.0004 0.2821 72.1388 269.8981 8.7034 102.5965
2 0.0001 0.2925 68.2495 230.2542 8.7034 98.9726
3 0.0002 0.1104 59.2368 273.0568 20.5284 88.4738
4 0.0016 0.1469 59.4811 247.3095 20.9610 96.7673
5 0.0001 0.1745 61.0328 246.8441 10.7688 89.7082
6 0.0002 0.0652 68.7314 303.2903 12.7820 118.9067
7 0.0009 0.1702 64.2028 256.7041 23.9408 129.0289
8 0.0001 0.0832 59.4138 214.8046 25.3371 120.1114
9 0.0002 0.0233 60.9262 275.7481 22.3017 115.8198
10 0.0002 0.0624 74.6257 280.4140 3.7558 123.2256

 
Table 1

Standard feature values for the sample frames of a duck
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The user query video is analysed, its background is removed and the procedure for 
identification is run on selected frames. The results are tabulated as below:

FIGURE SUPPORT 
({Duck})

SUPPORT 
({Not 
Duck})

RESULT TRUE/
FALSE

0.0748 0.9252 Not Duck True

0.0817 0.9183 Not Duck True

0.0523 0.9477 Not Duck True
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0.2429 0.7571 Not Duck False

0.9041 0.0959 Duck True

Table 2
Calculated result of comparing user query to database images
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Chapter 6 Conclusion and Future Scope

A new approach for bird recognition is proposed using texture pattern in the image.
Bird segmentation is the key step involved in bird recognition. Bird segmentation is a 
difficult task as the birds are normally camouflaged with the background and they are 
either constantly moving(with respect to the background) or stay still at a place due to 
which the choice of background subtraction algorithm greatly affects the 
segmentation process. After background subtraction, wavelets were used to extract 
edges information, which is further used to cluster the bird. The DST decision maker 
then makes a decision regarding the bird based on the inter cluster distances such as 
Bhattacharya distance, Hausdorff distance and Euclidean distances. 

An efficient background subtraction technique would have to be developed that would 
address the problems in this particular domain. Bird movement is quite unpredictable 
and they tend to blend into their background. A better clustering technique such as 
super vector machine (SVM) clustering can also be employed.
In the technique outlined in this work, we have worked with average feature values 
(inter cluster distances). By averaging the values, a lot of information is lost; even 
though the decision process is rendered simple by it. To truly utilize information 
regarding texture of the bird, we need to retain all these values. Further, intra cluster 
distances also need to be made part of decision making process. Texture information 
extracted from such large amounts of data can narrow the choice of possible birds for 
a user query. 
Further, the database needs to be expanded to many more birds. The inter and intra 
cluster distances calculated for these database images need to be analyzed. Patterns 
may be discerned from these values i.e. we can determine the variation in feature 
values as the poses of the bird vary. Texture information for the same bird in different 
positions yields more insights into classification and helps the decision maker make a 
more informed decision.
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